SOFIA Non-Sidereal Pointing and Tracking

John Rasmussen
Critical Realm Corporation

SOFIA Users Group Nov 18, 2013
Executive Summary

• Complex changes to MCCS and the TA TRC and TASCU are underway to achieve high velocity non–sidereal pointing and tracking.
• The design provides a simple interface to the operator and/or observer to request such pointing and tracking.
• Prototype developments appear to achieve relatively high computational accuracy
• MCCS/TASim interaction is robust and mature
Acknowledgments

• Dr Michael Gross, USRA – algorithm development, TASim Lead Developer
• John Cooper, USRA – algorithm development and mathematical modeling
• Dr. Elizabeth Moore, USRA – User Interface development and ISD Manager
• Dr. Holger Jakob, DSI – TA Lead
• John Rasmussen, Critical Realm Corp, algorithm development, Scenario/algorithm lead
• Chris Luk, Wes Patterson, Todd Jenkins, L3 Communications – Software Development Team
• A simplified presentation of SI, TA, and MCCS command and housekeeping relationships.

• The MCCS PIS XFORMS processes convert observer coordinates to TA coordinates.
Non-Sidereal Tracking Use Cases Analysis

<table>
<thead>
<tr>
<th>Track vs. Target Type</th>
<th>Track Object is Sidereal</th>
<th>Track Object is Non-Sidereal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target is Sidereal</td>
<td>“Typical” – e.g. observe stellar nebula using nearby track star</td>
<td>Is there a case here? Seems contrived (i.e. not necessary)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>…but, contrived case may help in verification since target location (track point) is well known…</td>
</tr>
<tr>
<td>Target is Non-Sidereal</td>
<td>Lowell Observatory method – use track stars to guide observations of a non-sidereal target</td>
<td>Observe an asteroid/comet/planet that could be used to guide as well</td>
</tr>
</tbody>
</table>
Design Approach

1. Non-sidereal observing utilizes geocentric ephemeris files in JPL format (first phase --- osculating elements will be prioritized for a later phase)
2. MCCS interpolates ephemeris for the given time and converts geocentric ephemeris to topocentric coordinates using current SOFIA longitude, latitude and altitude
3. MCCS will compute TA velocities of Tracker Area of Interests (AOIs) and Fine Drive controller and provide velocities to the TA Tracker and TASCU
4. TA will propagate velocities and change guide object-to-target offset as needed during tracking
5. Subsequent nods, dithers, tweaks, or pointing in SI coordinates leave velocity in place
• From some external source (e.g. JPL Horizons)
 - Create ephemeris file for object to observe and track object (if non-sidereal)
 - Use stepsize per required accuracy (i.e. moons will change velocity)
 • Recommend 15min to avoid significant error in apparent velocity determination

• Transfer to SOFIA
• Create positions and go
 - coord.position name=jupiter (ephemeris={xyz file})
 - ta_pos.goto pos=jupiter
 - New command to associate ephemeris with an AOI coord.aoi_create

Non-SOFIA ephemeris tool (e.g. JPL Horizons)

Format of ephemeris file governed by MCCS_SI_04

/MODSTOR/MISSION_DATA/ephemeris

Data Flow
Not a Science test case; just a validation of MCCS and TA coordination

• After pointing with MCCS satellite, TA was in inertial mode with all stars moving in focal plane except “one”
• Pointing was generated from an approximation of satellite’s position (i.e. not precisely generated from a known orbit vector or authoritative source akin to JPL Horizons).
• See Doug Hoffman’s movie at: https://wiki.sofia.usra.edu/twiki/pub/EngDataAnalysis/S3postDeployRawData/GeoStationary.mov

Stable results at velocities much higher than Science use case (15″/sec vs 1″/sec)
This observation was completely *unplanned*.

- While performing other tests, observed via Stellarium that Juno was approaching the azimuth that SOFIA was observing during the line operation.
- Quickly generated a JPL Horizon’s ephemeris file since we had internet connectivity.
- Transferred file to MCCS via MD.
- Created “Juno” position.
- Pointed to MCCS “Juno” position and placed image.

GUI/PIS coordination of interfaces presents very low impact to existing operations concepts.
1999 CF9

Initial pointing
1999 CF9; dist: 0.06AU, mag: 14.8, velocity ~800”/hr

AOI around asteroid

Good results on fast Near Earth Object in absence of tracking
Integration Lab Results

Overlays of Jovian moons (before TASim supported the rendering of such satellites)

• Position creation is very slightly slower than sidereal position creation while the MCCS reads the file
• Multiple non-sidereal positions can be created.
• Areas of Interest can be created from such positions.
Integration Lab Results
Guiding on a star in FFI while observing a ~15"/sec object

• Place holder for a separate slide of size 35M with an embedded movie
Next Steps

- Develop, unit-test TA Tracker software
- Integrate MCCS engineering build with actual TA system
- Verify MCCS and TA systems
 - Majority of MCCS verification in Lab with TASim
 - Allows eval during simulated flight at various locations, velocities
 - Allows use of arbitrary non-sidereal objects
 - MCCS–TA interface verification in Hangar with TA
 - Real system to real system for very new command interfaces
 - High Level MCCS validation on sky in a line operation
 - Slow non-sidereal objects
 - Simulated non-sidereal objects from sidereal “ephemeris”
- Verify and validate Observatory capability
 - Repeat and validates behavior in a line operation and in flight
 - Utilizes data analysis team who perform astrometric analysis of images to establish pointing