Interstellar Dust and PAHs

Xander Tielens
Leiden Observatory
Interstellar Dust

Role of dust:

- Dominant opacity source FUV-submm
- Dominates spectral appearance of galaxies
- Reservoir of elements
- Dust & molecules
 - Limits molecular photodissociation
 - Catalytic surfaces
 - Cold storage
- Photo-electric heating and the energy balance of the gas
- Cosmic Rays
- Building blocks of planetary systems
Tielens Ancestry
The Lifecycle of Baryonic Matter

low mass stars high mass stars

credit: http://hea-www.cfa.harvard.edu/CHAMP/EDUCATION/PUBLIC/ICONS/
Cosmic Journey of Interstellar Dust

Stellar evolution
nucleosynthesis

Stellar death
Dust formation:
Chemical nucleation,
growth, agglomeration

Star formation
Nebular processing,
Jet processing
X-ray processing

Cloud phase
Chemical mantle growth
Thermal processing

Intercloud medium
Dust destruction:
Shock sputtering
Processing by UV, X-rays, & cosmic rays

Tuesday, June 8, 2010
Key Questions

• What is the inventory of interstellar dust?
• What are the important sources of dust and how does that depend on metallicity and star formation rate of the galaxy?
• What processes played a role in the evolution of dust in the interstellar medium?
• What kind of dust entered the Solar Nebula?
• What processes played a role in the evolution of dust in the planetary systems?
• How did dust evolve with time in the Universe?
• How is dust affected near black holes and in starburst environments?
• How did the evolution of dust affect the evolution of galaxies, stars and planets?
Probing the Dust: 1 Dust Inventory
The Spectral Richness of Dust

- ISO and Spitzer have revealed the incredible spectral richness of interstellar dust
- JWST will carry this to the era of vigorous star formation in the Universe
- SPICA will probe the high-z Universe
- Herschel will probe the far-IR
- SOFIA can probe bright stardust sources in the Milky Way to link these spectral characteristics to the characteristics of the stardust sources and turn this into a tool for understanding the origin of dust in the Universe

Hony, 2001, PhD thesis
Dust Inventory of the ISM

- **Silicates:**
 - Amorphous FeMg-silicates
 - Forsterite
 - Enstatite
 - Montmorillonite
- **Oxides:**
 - Corundum
 - Spinel
 - Wuestite
 - Hibonite
 - Rutile
 - Silica
- **“Pure” Carbonaceous compounds:**
 - Graphite
 - Diamonds
 - Hydrogenated Amorphous Carbon
 - Polycyclic Aromatic Hydrocarbons
- **Carbides:**
 - Silicon carbide
 - Titanium carbide
 - And others
- **Sulfides:**
 - Magnesium sulfide
 - Iron sulfide
- **Ices:**
 - Simple molecules such as H$_2$O, CH$_3$OH, CO, CO$_2$
- **Others:**
 - Silicon nitride
 - Metallic iron
 - Carbonates
Sources of Stardust

- Spitzer: Origin of dust in the low metallicity Magellanic Clouds (SAGE & SAGE-Spec)
AGB Stars & the ISM in the LMC

Dust mass injection into the ISM:
~23,000 AGB stars & 2.7x10^{-5} M_{\odot}/yr

Extreme AGB ~2.4x10^{-5} M_{\odot}/yr
O-rich AGB ~1.4x10^{-6} M_{\odot}/yr
C-rich AGB ~2.4x10^{-6} M_{\odot}/yr

Tuesday, June 8, 2010
• SOFIA can provide a full census of stardust injected into the Milky Way and compare it to interstellar dust characteristics

• JWST can uniquely probe punctuated evolution: contributions from e.g., captured dwarf galaxies

• JWST can probe IR dust extinction

• Volume limited sample of stardust sources in the Milky Way based on GAIA (2012-2020) distances
Cosmic Journey of Dust:
2 Dust Formation
Thermodynamic Condensation Sequence

- Gas with solar system composition
- Condensation is sequential
- Two major sequences
 - Oxides: starting with aluminum oxide/spinel and ending with Ca,Al silicates
 - Silicates: starting with forsterite and forming enstatite
- Separate sequence for C-rich gas characterized by carbonaceous compounds

Salpeter, 1977, ARAA, 15, 267
Oxides Condensation Sequence

- Oxides at low mass loss rates
- Freeze out

Tuesday, June 8, 2010
The Incredibly Rich mid-IR Spectrum of Crystalline Silicates

Characteristics

- Crystalline silicates
 - Forsterite/enstatite
 - Magnesium-rich
 - Cold
 - Disk sources
- Amorphous silicates
 - Role of iron
- High mass loss rates
- The silicate condensation sequence

Tuesday, June 8, 2010
The 69 \(\mu \text{m} \) band

Crystalline band characteristics:

Peak position and width depend on the composition and temperature of the material

Mg-rich end members of the olivine and pyroxene families (Fe/Mg<5%): Forsterite and enstatite

\(T \sim 100-200 \text{K} \)

Tuesday, June 8, 2010
AGBs as Dust Condensation Laboratory

- Two condensation sequences:
 - Oxides
 - Silicates
- Time is of the essence
- AGBs are templates for SNe and other dust factories
- Controlled stellar samples are required

Tielens, 2010,
The First Clusters

- What is the structure of the first molecular clusters?
- How does their formation depend on environment?
- How does that influence the dust formation process?

Dust in Extreme Environments

SOFIA can probe stellar dust laboratories and relate the dust characteristics to the environment.

Tuesday, June 8, 2010
Cosmic Journey of Dust: 3 Processing in the ISM
Dust & Interstellar Shocks

- Supernovae eject material at ~10,000 km/s
- This high velocity gas drives a strong shock wave, sweeping up interstellar material
- As the supernova remnant expands, the shock velocity will decrease until the swept up gas (and ejecta) merge with the interstellar medium
- Shocks destroy dust grains through sputtering and shattering
- 100 km/s shock “chips” 30 Å layer from a 1000Å grain
- Calculated lifetime: ~500 Myr

Shocks, Depletion & Grain Growth

- Depletion: elements are locked up in dust
- High velocity gas has less depletion
- Intercloud gas has less depletion than cloud gas
- Interstellar shocks in the intercloud medium sputter a thin outer layer (~30Å) which is rapidly reaccreted in diffuse clouds
- Carbon is not involved in these mantles
- Carbonaceous mantles from energetic processing of ices in molecular clouds or Solar nebula ??

Grain Growth

- Dust life time \ll injection time scale
- Grain growth is important
- Dust loses and reacquires thin veneer or is it ‘completely’ reformed?
- Is interstellar dust dominated by stardust or by “mantled” dust?

SOFIA can probe the relationship between stardust and interstellar dust.
4 Interstellar PAHs
The incredibly rich spectrum of interstellar PAHs
PAH Band Variations

- C-H and C-C modes vary independently

Blind Signal Separation & Principal Component Analysis methods

The Spectral Characteristics of PAHs

PAH spectra depend on:

- charge state
- size
- molecular structure
- clustering
- complexing
- heteroatoms
- temperature
-
Emission Components

- PAHs (IR features)
- Clusters (plateaus)
- Very Small Grains (mid-IR Cirrus)
- Big Grains (far-IR continuum)

Models differ in the components and characteristics adopted
The Relationship of PAHs & Dust

• PAHs are the extension of the interstellar grain size distribution into the molecular domain
• PAH/VSG/Dust grain abundance ratios vary with physical conditions/history
SOFIA can relate observed variations to local physical and chemical processes
PAH Ionization Balance

- Ratio of C-H/C-C modes measures charge state
- Calibrate PAH band ratios on well-studied PDRs
- Diagnostic atomic and molecular ‘PDR’ lines
- SOFIA can link the observed spectral characteristics of PAHs to the local physical and chemical characteristics

Tuesday, June 8, 2010
The ISM is a Harsh Mistress

Lifecycle of Interstellar PAHs

Timescales estimated by extrapolating solid state concepts into the molecular domain

- Formation C-rich AGB stars
- Shocks/Cosmic Rays
 - Lifetime ~ 100 Myr
- UV lifetime 100 Myr
- Reaction rates are poorly known for large PAHs
- AGB star injection timescale ~ 2 Byr

Tuesday, June 8, 2010
Origin of Interstellar PAHs

- PAH life time << injection time scale
- Are interstellar PAHs dominated by starPAHs or by interstellar PAHs?
- PAHs as the leftover condensation nuclei in the soot formation route in stellar ejecta
- PAHs as the fragmentation products in grain-grain collisions in interstellar shocks

PAH Spectral Variations

Profile variations

- Strongest for CC modes
- Classes A, B, C
- Classes correlate well for CC modes
- Correspond to object type

PAHs in Regions of Star Formation

- Peak position of the 7.7 μm band varies depending on source type
- Active chemistry

PAHs and Herbig Stars

Chemical Modification of PAHs

Origin of peak shifts

- N in the carbon skeleton
- PAH clusters (with Fe)
- PAH clusters
- Aliphatic/aromatic carbon variations

MIRI/JWST will be able to probe the spectral & chemical evolution of PAHs in regions of star and planet formation

- Chemical inventory
- Chemical processes:
 - UV/ X-ray/thermal
- Physical processes:
 - mixing/lightning/shocks
SOFIA – by probing a wide range of environments – can link observed spectral variations to the physical and chemical processes
GrandPAHs

- IR emission spectra are very similar, particular in the “extreme” regions of the ISM

- 15-20 µm region often dominated by a few bands (16.4/17.4/17.0 µm)

- Typical PAH will absorb some 100 Million UV photons over its lifetime what can break, will break

- Interstellar PAH family dominated by a few, extremely stable species
SEARCHING FOR THE ‘GRANDPAH’

- The far-IR ‘drum beat’ modes are highly molecule specific

- Only SOFIA can measure all vibrational modes of interstellar PAHs

- Sample of objects with different conditions and different PAH family to probe chemical evolution and key processes
Identification of specific PAHs

- Drumhead modes: Lowest-lying vibrational state will emit when the modes have decoupled

- Observing strategy: search for Q-branch at moderate resolution over full spectral range

- Follow up with high resolution search for P/R branches

- SOFIA (& Herschel) can search for these signatures of the grandPAHs

Summary

– Infrared missions have provided us with an unprecedented view of the dusty & molecular Universe
– Most of the heavy elements are injected as “stardust” into the interstellar medium
– Space is a harsh mistress: Dust & PAHs are heavily processed in the ISM
– Undoubtedly, dust has strongly evolved over the lifetime of the universe as stellar populations change, star formation activity varies, and punctuated energetic events take their toll
PAHs & Dust in the Universe

- What are the characteristics of dust & PAHs injected by different stellar sources?
- What is the contribution of low mass versus massive stars to the ISM budget?
- How does this depend on metallicity and other galaxy characteristics?
- How does this compare to the local interstellar dust characteristics?
- What processes control the evolution of dust & PAHs in galaxies?
- What does this imply for dust & PAHs in extreme environments?
PAHs & Dust in the Universe

SOFIA’s Niche:

• Mass inventory of stardust sources in the local Milky Way & comparison to interstellar dust

• Dust formation characteristics in stellar environments

• PAH characteristics and their relationship to the physics and chemistry of the environment

Building upon ISO & Spitzer and with contributions from Gaia, ALMA, & JWST

Tuesday, June 8, 2010
New Instrumentation

- Moderate resolution ($R=300-1000$) spectrometers covering from 3 to 300 microns
- Integral Field spectrometers ($R=300-1000$) in the mid-IR (3-20 micron)
- plus
 - High resolution spectrographs to probe the physics of the medium