Dust & Polarization in the Interstellar Medium

John Vaillancourt
SOFIA Science Center
Universities Space Research Association
NASA Ames Research Center

B-G Andersson – SOFIA/USRA
Darren Dowell – Caltech
Roger Hildebrand – U. Chicago
Giles Novak – Northwestern U.

Brenda Matthews – Herzberg Inst.
Jackie Davidson – U. Western Australia
Martin Houde – U. Western Ontario
Polarized Dust in the ISM

• Polarization: optical through mm wavelengths
 – Why is light polarized? → dust grains are aligned
 – Why, Where, and How are grains aligned with B-field?
• Polarization spectra observations (among others)
 – optical extinction (near-UV thru near-IR) in diffuse ISM
 – FIR/MM emission in dense clouds
• "Unified" models to explain polarized emission & absorption
• Extension to …
 – emission from Dark clouds and the diffuse ISM
 – Longer wavelengths: $\lambda \rightarrow 3$ cm, $\nu \rightarrow 10$ GHz
Where is Dust/Light Polarized?

Colored vectors = FIR/SMM (e.g., Stephens, et al. 2011)
Black = optical (Heiles 2000)

inferred B-field direction

NGC 6334
(Novak et al. 2009)

$A_V \sim 30$

1000 AU

NGC1333
SMA (Girart et al. 2006)

October 16, 2012
John Vaillancourt
Where is dust aligned?

- Polarization observed in both diffuse ($A_V < 5$) and dense ($A_V > 10$) regions of ISM

- Is polarization tracing B-fields in all these environments? – need consistent alignment model
Ferromagnetic alignment?

- Alignment easily disrupted by collisions
- Insufficient Fe in dust
- B-field too weak (< mG)
 - $B_{MW} \sim \text{few } \mu\text{G}$
Paramagnetic Grain Alignment

Goal: \(\tau(\text{align}) < \tau(\text{collision}) \approx 10^{13} \text{ sec.} \)

\[\vec{B} - \text{Magnetic Field direction} \]
\[\vec{J} - \text{Angular momentum (spin axis)} \]
\[\vec{a} - \text{grain's largest inertial moment} \]

Step 1: Internal Alignment
- internal relaxation / dissipation, via (nuclear) Barnett-effect

Step 2: Angular Momentum alignment
- paramag. dissipation, suprathermal rot'n \& H_2 torques?
- radiative torques

Davis & Greenstein 1951
Jones & Spitzer 1967
Purcell 1979
Lazarian \& Draine 1999
Hoang \& Lazarian 2008
Radiative Alignment Torques (RAT)

- \vec{F} is the alignment torque (\perp to \vec{J})
- \vec{H} is the spin-up torque (\parallel to \vec{J})

An asymmetrical grain has different right- and left-handed helicity components and therefore couples differently to right- and left-handed circularly polarized radiation components

- What are values ξ_0 and J_0 such that $\langle \vec{F} \rangle = \langle \vec{H} \rangle = 0$, and $d\langle \vec{F} \rangle / d\xi < 0$?

- Exact answer is a function of things like: radiation field, grain size, wavelength, Ψ, ...

\[\xi_0 \approx 0 \text{ or } \pi \]
Tests of Alignment Theories

• Predictions of the Radiative Torque Model:
 – Alignment efficient up to $A_V \sim 10$, necessary for dense regions
 • compared to H$_2$ torques which drop at lower A_V (i.e., no more free-H)
 • difference in T_{gas} and T_{dust} not necessary
 – Increased grain alignment efficiency with exposure to photons
 • Drop in polarization with opacity; "polarization holes"
 • Drop in polarization with distance from radiation source
 – Larger grains are better aligned than small grains
 • shift in polarization spectrum
 – Polarization dependent on angle between radiation direction and magnetic-field
Near-optical wavelengths ($\lambda \sim a$)

- large grains (traced by NIR) better aligned than small grains (traced by UV); e.g. Kim & Martin 1995

FIR–MM wavelengths ($\lambda \gg a$)

- multiple domains of grain temperature and polarization/alignment; Hildebrand et al. 1999
- most recent: Vaillancourt & Matthews 2012
Simplified Cloud Model

$n(a) \sim a^{-3.5}$

$\langle a \rangle \sim \lambda_{\text{max}}$

Temperature

Size Distribution

polarization

grain size

A_V
Simplified Cloud Model - NIR

Temperature

Size Distribution

\(n(a) \sim a^{-3.5} \)

\(\langle a \rangle \sim \lambda_{\text{max}} \)

\(\langle a \rangle \)

\(A_V \)

\(\lambda_{\text{max}} \)

In near-visible \(\Rightarrow \) correlation between \(\lambda_{\text{max}} \) and \(A_V \)

October 16, 2012

John Vaillancourt
Simplified Cloud Model - NIR

In near-visible \Rightarrow anti-correlation between λ_{max} and Temperature

\[n(a) \sim a^{-3.5} \]

\[\langle a \rangle \sim \lambda_{\text{max}} \]

\[\lambda_{\text{max}} \text{ vs. Temperature} \]

(Andersson & Potter 2010)
Polarized Emission vs. Wavelength

(350 µm grayscale/contours)

Dotson et al. 2000, 2010; Chrysostomou 2002
Comparing **Hertz** & **SCUBA**

**Hertz @ CSO 350 \(\mu \text{m} \) **SCUBA-pol @ JCMT 850 \(\mu \text{m} \)

Data Cuts: \(P > 3\sigma_p \) and \(|\phi(850) - \phi(350)| < 10^\circ \)

All 14 Objects: Median \(P \)-ratio = 1.7 ± 0.6

Vaillancourt & Matthews 2012
Comparing Hertz & SCUBA

Hertz @ CSO 350 µm SCUBA-pol @ JCMT 850 µm

Polarization Ratio
P(850) / P(350)

Data Cuts: $P > 3\sigma_p$ and $|\phi(850) - \phi(350)| < 10^\circ$

All 14 Objects: Median P-ratio = 1.7 ± 0.6
Dust emission from
• A single grain species at
• A single temperature
(Hildebrand et al. 1999)

Does not match Observations!
Dust emission from
- A single grain species at
- A single temperature
 (Hildebrand et al. 1999)

Dust emission from
- multiple grain species
- multiple temperatures or emissivities
 (Hildebrand et al. 1999)

\[P_\nu F_\nu = \sum_i p_i \nu^{\beta_i} B_\nu(T_i) \]
Grain alignment model in *starless* clouds:
- Nearly all grains exposed to same I.S. radiation field
- Large grains are more efficiently aligned
- Large grains cool more efficiently
 \[\Rightarrow\] Colder grains better aligned than warm grains

Bethell et al. 2007 (RAT)

Draine & Fraisse 2009 (empirical ext. & pol.)

- only SiO pol.
- SiO + C
Homogenous Cloud: $T_A > T_B$, $p_A < p_B$
Homogenous Cloud: $T_A > T_B$, $p_A < p_B$
Simplified Cloud Model – FIR

Homogenous Cloud: $T_A > T_B$, $p_A < p_B$

RAT model, Cherpunov & Lazarian, priv. comm.
• Observed cloud SEDs indicate wide dust temperature distribution
• Polarization λ-minimum constrains SED models
 – Function of components’ temperature T, and spectral index β
 – Independent of relative & total column densities
Correlation between Polarization and stellar locations
- use P-spectrum (ratio) to eliminate change in spatial environment
- Existing SMM observations (20 arcsec) insufficient to resolve stars
- SHARP (10” at 350 µm) or SCUBA-2 (7” @ 450 µm) may resolve stars
- SOFIA (5” - 10” @ 50 - 100 µm), more sensitive to warm dust near stars
• All grains likely exposed to same environment

• Finkbeiner, Davis, & Schlegel (FDS99) — high latitude dust
 – $T = 9.5\, \text{K}, \beta = 1.7$ (silicate ?)
 – $T = 16\, \text{K}, \beta = 2.7$ (graphite ?)

• If silicate is polarized and graphite unpolarized then $T_C > T_{Si}$, $p_C < p_{Si}$, $\beta_C > \beta_{Si}$

• Predictions at $\lambda > 1\, \text{mm}$
 (Hildebrand & Kirby 2004; Bethell et al. 2007; Draine & Fraisse 2009)
All grains likely exposed to same environment

Finkbeiner, Davis, & Schlegel (FDS99) — high latitude dust
- $T = 9.5 \text{ K}, \beta = 1.7$ (silicate ?)
- $T = 16 \text{ K}, \beta = 2.7$ (graphite ?)

If silicate is polarized and graphite unpolarized then $T_C > T_{Si}$, $p_C < p_{Si}$, $\beta_C > \beta_{Si}$

Predictions at $\lambda > 1 \text{ mm}$
(Hildebrand & Kirby 2004; Bethell et al. 2007; Draine & Fraisse 2009)
Millimeter Polarimetry

BICEP Polarimetry at 96, 150, 210 GHz (3.1, 2.0, 1.4 mm) [Bierman et al. 2011]

• High-frequency data is dominated by dust and...
BICEP Polarimetry at 96, 150, 210 GHz (3.1, 2.0, 1.4 mm) [Bierman et al. 2011]

- High-frequency data is dominated by dust and
- Polarization is approx. constant with frequency
The Future of Dust Polarimetry

Need new instruments which
- Cover wide spectral range
- Better sampled polarization & total intensity SEDs
- Increases spatial resolution & sensitivity
- New environments, other than dense clouds

Instruments like...
- HAWC / SOFIA
- SHARP / CSO
- SCUBA-2 / JCMT
- CCAT
- ALMA
- Planck

October 16, 2012

John Vaillancourt
The Future of Dust Polarimetry

(e.g., Dowell et al. 2010)
The Future of Dust Polarimetry

(e.g., Dowell et al. 2010)
Polarized Dust in the ISM

- Optical dust-extinction and FIR dust-emission is polarized, grains are aligned with B-fields
- Both optical and FIR polarization-spectra are consistent with multiple domains of grain size, temperature, and polarization
- Radiative Torques are consistent with polarization observations in both the optical/NIR (extincted starlight polarization) and FIR/MM (polarized emission)
- Future Tests
 - Better sampling of intensity & FIR-MM polarization spectrum
 - Observations in diffuse ISM; different environment from Galactic clouds
 - Look for correlation with stellar locations to test alignment models
 - Future instruments: HAWC/SOFIA, SCUBA-2, Planck, ALMA