SOFIA Highlights: Star formation

Artist’s concept illustrating a catastrophic collision between two rocky exoplanets

By Maggie Thompson, Ralph Shuping, and Joan Schmelz

Paper: Studying the Evolution of Warm Dust Encircling BD +20 307 Using SOFIA
Thompson, Maggie A., et al., 2019, ApJ, 875, 45.

Recent observations from SOFIA of a binary star system designated BD +20 307 indicate that there may have been a catastrophic collision between two planets within the last 10 years.

A cosmic light show sparked by the formation of massive stars in the W51 stellar nursery

By W. Lim, J. De Buizer, R. Klein, and J. Schmelz (USRA)

Paper: Surveying the Giant HII Regions of the Milky Way with SOFIA. I. W51A
Lim and De Buizer 2019, ApJ, 873, 51.

Orion nebula bubble

By Kassandra Bell and Joan Schmelz (USRA)

Paper: Disruption of the Orion molecular core 1 by wind from the massive star θ1 Orionis C
Pabst et al. 2019, Nature, doi:10.1038/s41586-018-0844-1

Orion Dragon movie screenshot

New data from NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, reveal a three-dimensional (3-D) view of the Orion Nebula – Earth’s closest star-formation nursery – and a powerful stellar wind. Researchers can rotate, zoom in, and even dive through this data cube to better understand how stars are forming.

Illustration of a star cluster forming from the collision of turbulent molecular clouds surrounded by green atomic envelopes

By Kassandra Bell and Joan Schmelz (USRA)

Paper: The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud
Bisbas, Tan et al. 2018, MNRAS, 478, L54.

Images taken at multiple wavelengths showing the dust and the magnetic fields in 30 Doradus

The Stratospheric Observatory for Infrared Astronomy, SOFIA, released new data from its recent Southern Hemisphere observations revealing the structure of celestial magnetic fields in the region known as 30 Doradus, or 30 Dor, at a scale that has never been seen before.

The Horsehead Nebula is shown in red and green against the surrounding cold molecular cloud (blue)

Two research teams used a map from NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, to uncover new findings about stars forming in Orion’s iconic Horsehead Nebula. The map reveals vital details for getting a complete understanding of the dust and gas involved in star formation.

The Tarantula Nebula as seen on SOFIA’s visible light guide camera.

To have a full picture of the lives of massive stars, researchers need to study them in all stages – from when they’re a mass of unformed gas and dust, to their often dynamic end-of-life explosions.

The massive forming star Cepheus A shown at three infrared wavelengths of 8, 19 and 37 microns.

Astronomers are observing star-forming regions in our galaxy with NASA’s flying telescope, the Stratospheric Observatory for Infrared Astronomy, SOFIA, to understand the processes and environments required to create the largest known stars, which tip the scales at ten times the mass of our own Sun or more.

Pages